Lensless Compressive Sensing Imaging
نویسندگان
چکیده
—In this paper, we propose a lensless compressive sensing imaging architecture. The architecture consists of two components, an aperture assembly and a sensor. No lens is used. The aperture assembly consists of a two dimensional array of aperture elements. The transmittance of each aperture element is independently controllable. The sensor is a single detection element, such as a single photo-conductive cell. Each aperture element together with the sensor defines a cone of a bundle of rays, and the cones of the aperture assembly define the pixels of an image. Each pixel value of an image is the integration of the bundle of rays in a cone. The sensor is used for taking compressive measurements. Each measurement is the integration of rays in the cones modulated by the transmittance of the aperture elements. A compressive sensing matrix is implemented by adjusting the transmittance of the individual aperture elements according to the values of the sensing matrix. The proposed architecture is simple and reliable because no lens is used. Furthermore, the sharpness of an image from our device is only limited by the resolution of the aperture assembly, but not affected by blurring due to defocus. The architecture can be used for capturing images of visible lights, and other spectra such as infrared, or millimeter waves. Such devices may be used in surveillance applications for detecting anomalies or extracting features such as speed of moving objects. Multiple sensors may be used with a single aperture assembly to capture multi-view images simultaneously. A prototype was built by using a LCD panel and a photoelectric sensor for capturing images of visible spectrum.
منابع مشابه
Noise analysis for lensless compressive imaging
We analyze the signal to noise ratio (SNR) in a recently proposed lensless compressive imaging architecture. The architecture consists of a sensor of a single detector element and an aperture assembly of an array of aperture elements, each of which has a programmable transmittance. This lensless compressive imaging architecture can be used in conjunction with compressive sensing to capture imag...
متن کاملSignal to Noise Ratio in Lensless Compressive Imaging
We analyze the signal to noise ratio (SNR) in a lensless compressive imaging (LCI) architecture. The architecture consists of a sensor of a single detecting element and an aperture assembly of an array of programmable elements. LCI can be used in conjunction with compressive sensing to capture images in a compressed form of compressive measurements. In this paper, we perform SNR analysis of the...
متن کاملCompressive Sensing via Low-Rank Gaussian Mixture Models
We develop a new compressive sensing (CS) inversion algorithm by utilizing the Gaussian mixture model (GMM). While the compressive sensing is performed globally on the entire image as implemented in our lensless camera, a lowrank GMM is imposed on the local image patches. This lowrank GMM is derived via eigenvalue thresholding of the GMM trained on the projection of the measurement data, thus l...
متن کاملPCS2013paper1021Multi-viewInLenslessCompressiveImaging-final
Multi-view images are acquired by a lensless compressive imaging architecture, which consists of an aperture assembly and multiple sensors. The aperture assembly consists of a two dimensional array of aperture elements whose transmittance can be individually controlled to implement a compressive sensing matrix. For each transmittance pattern of the aperture assembly, each of the sensors takes a...
متن کاملLensless Compressive Imaging
We develop a lensless compressive imaging architecture, which consists of an aperture assembly and a single sensor, without using any lens. An anytime algorithm is proposed to reconstruct images from the compressive measurements; the algorithm produces a sequence of solutions that monotonically converge to the true signal (thus, anytime). The algorithm is developed based on the sparsity of loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1302.1789 شماره
صفحات -
تاریخ انتشار 2013